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Machine Learning 
in Particle Physics 



History
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Machine Learning  in HEP is 
as old as the web!



Large Hadron Collider
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Modern scientific wonder: 

Operating since 2010

Expected to run for the 
next 15 years

Amazing success of an 
international collaboration of 
thousands of scientists from 
across the world 



Higgs Discovery
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July 4, 2012 



Higgs Discovery
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Higgs to di-photons
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ATLAS CMS



High-Energy Physics Today
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Machine learning at the forefront of 
what we do:
• Physics object identification
• Event type classification
• Fast event generation
• Object properties regression

Expanding quickly

Identifying boosted objects 
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• Identification of particles
• Identification of interactions
• Energy regression
• Event selection

Improvement in analysis from all four areas

In Higgs Discovery



Graph/Imaging Techniques

Fast 
Simulation

Relevant areas
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Tracking Object Identification
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Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

The maxpooling layers performed a 2⇥2 down-sampling with a stride length of 2. The dense

layer consisted of 128 units.

All neural network architecture training was performed with the Python deep learning

libraries Keras [47] and Theano [48] on NVidia Tesla K40 and K80 GPUs using the NVidia

CUDA platform. The data consisted of the 100k jet images per pT -bin, partitioned into 90k

training images and 10k test images. An additional 10% of the training images are randomly

withheld as validation data during training of the model for the purposes of hyperparameter

optimization. He-uniform initialization [49] was used to initialize the model weights. The

network was trained using the Adam algorithm [50] using categorical cross-entropy as a loss
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First DNN paper in HEP

HEP.TrkX 2019

Baldi, Sadowski, & Whiteson, 2014
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Shallow

Deep NN
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Feature Extraction
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Feature Extraction

SUSY Classification

SUSY high-level features
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With convolutional neural networks

Oliveira et al., JHEP 07 (2016) 069

Jet Images



Key Question

9/8/21 Sergei Gleyzer                                                AI4EIC Workshop 16

Can we fully exploit the detectors?
low-level data + modern deep learning

End-end learningAndrews et al 2018, 2020
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CMS Detector and Particle ID



End-to-End Learning
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By-passing traditional reconstruction with 
deep neural networks 

arXiv:1807.11916 arXiv:1907.08276

ML4SCI
ML4SCI
ML4SCI



JHEP 07 (2016) 069

End-to-End Jets
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Andrews et al. 2020
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Traditional Jet Images 0.721

Andrews et al. 2020



End-to-End Top ID
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Gleyzer et al. (2021)Andrews et al. (2021)



Upcoming Challenges

Data size:
– LHC 15,000,000 Тb 2010 - 2035
– Resources not up as fast as data volumes
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Unknown 
Physics
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Pile-Up Collisions



Going Beyond Classification
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Generative Models
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Simulation GANs
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Paganini et al. (2017) 



CWGANs
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Blue et al. vCHEP (2021) 



Graph Neural Networks

9/8/21 Sergei Gleyzer                                                AI4EIC Workshop 28

Applied to
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GNNs for Simulation
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Hariri et al., 2104.01725



Anomaly Detection (DQM)
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A. Pol et al. (2018) 



Machine Learning Trigger
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ML at Level-1 Trigger

Auto-EncodersFPGAs and Deep Learning



Search for New Physics
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Auto-Encoders

Train on Standard Model processes 
New physics as an anomaly

Auto-encoder
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Key Ideas for HL-LHC
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Graph and End-End Representation Learning

Deep Combination of Spatio-Temporal Data 

Tensor decomposition (towards trigger) 

Compositionality, causal modeling (inference)

Unsupervised learning and physics 



Open Questions
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How to quantify uncertainty

First principles models

Model interpretability

What features are learned
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https://indico.cern.ch/event/1031957/
Sergei Gleyzer                                                

AI4EIC Workshop



Summary
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• Will require progress to extract all the 
knowledge we seek from the data at the 
HEP experiments

• We are taking steps towards 
answering  fundamental questions 
across all frontiers

• Advanced Deep Learning is a powerful tool 
to help us achieve these goals for 
reconstruction, simulation and realtime
applications



THANK YOU
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Questions? 
Email: sgleyzer@ua.edu

mailto:sgleyzer@ua.edu

